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In this paper we characterize diagonal operators from [, into /., 1 <p,
g < o, by their entropy numbers. The results contain those of Marcus [16]
formulated in the language of e-entropy and Oloff [21]. Moreover, the
remaining gaps in [16, 21] are filled in the much more complicated situation
where 1 < p <g< .

Furthermore, we extend the results to diagonal operators acting between
Lorentz sequence spaces. It turns out that the computation of entropy
numbers of diagonal operators can be reduced to the computation of certain
entropy quasi-ideal norms of identity operators acting between the simple n-
dimensional vector spaces ;.

Finally, the entropy numbers are used for studying eigenvalue problems of
factorable operators acting on Banach spaces.

The statements of this paper are obtained using results and techniques
recently proved and developed by the author in [4].

TERMINOLOGY

In the sequel almost all notations and some basic definitions are adopted
from |24}. Concerning interpolation theory we refer to [1, 27].

The class of all (bounded linear) operators between arbitrary Banach
spaces is denoted by &, while ¥(F, F) stands for the set of those operators
acting from E into F.

If x = (&) is a bounded sequence, then we put

s,(x) :=1inf{o > 0: card(k: | &| > o) < n}.

In these case |&,|>[&]>--- >0 it turns out that s,(x)=¢,|. Therefore
(s,(x)) is called the non-increasing rearrangement of x. For 0 < p, u € oo the
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Lorentz sequence space /, , consists of all sequences x = (¢,) having a finite
quasinorm

oo} Yu
([l = (Z [n’/”“‘/“s,,(x)]") if O<u< oo
n=1
= sup [n"Ps,(x)] if u=o0.
n=1,2,...

For p=u we get the classical space of p-summable sequences which is
denoted by [/, [l,]- The n-dimensional vector equipped with the norm || ||,,
1 < p< o, is denoted by .

The scale of Lorentz sequence spaces is ordered lexicographically. This
means that

lp,.u, < lp;.uz if 0<p;<p,<o, O0<u, u,<o,
and
Ip,unclp.uz if 0<pgoo, 0<u <u,<c0.

In the sequel, by p(s, p,...), Po($, Ds-o- ) £1(Ss Dse..)s... We always denote positive
constants depending only on s, p...., but not on the quantity n.

1. ENTROPY NUMBERS, s-NUMBERS, AND OPERATOR IDEALS

For every operator S € ¥(E, F) the nth entropy number ¢,(S) is defined
to be the infimum of all ¢ > 0 such that there are y, ..., ¥,.-, € F for which

201

S(Up) < U {yi+eUg}

holds. The sets U, and U, are the closed unit balls of E and F, respectively.

Roughly speaking, the asymptotic behaviour of e, (S) characterizes the
“degree of compactness” of S. In particular, S is compact if and only if
lime,(S)=0.

The theory of entropy numbers was developed by Pietsch for the first time
in [24, (12)]. However, certain functions inverse to the e-entropy already
appeared in Mitjagin and Pelczynski [19] and Triebel [28].

The concept of entropy numbers is related to that of e-entropy first studied
by Pontrijagin and Schnirelman [26] in 1932. Further contributions are
mainly due to Soviet mathematicans (e.g., [2, 13]). For additional infor-
mation the reader is referred to the monograph of Lorentz [15]; see also
[14].
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The entropy numbers have the following nice properties of an additive and
multiplicative s-number function [24, (12)]:

monotonicity,
[Sl=e,(S)>e)S)>--->0  forS€L(E,F)
additivity,

im1(S+T)<e,(S)+e,(T) for S, T€ L(E,F);

multiplicativity,
enim_1ST)< e, (S) e, (T) forTe Y(E,F), S€E¥(F,G)
Put
L ={SeL: (e, (S)€EL,)
and

LE(S) =k, (S, for SELT,

where Kk, is some norming constant; then [¥£¢);L!)] becomes a
quasinormed operator ideal [24], (14.3). We write [£; L{?] instead of
[£2¢€); L{)]. From the multiplicativity of the entropy numbers we get the

useful product formula

1 1 1 1 1 1
Lo Lo SLE for?=;+;‘:, T=Z+t_2'

The definition of the product of quasinormed operator ideals comes from
[24, (7.1)].

For our purpose we also need the following s-numbers: If § € ¥(E, F)
and n=1, 2,..., then the nth Gelfand number and Kolmogorov number are
defined by

¢, (S) := ind{|| SJ5 |: codim(M) < n}
and

d (S) := inf{|| Q% S ||: dim(V) < n},

respectively. Here J% is the embedding map from M into E and QF the
canonical map from F onto F/N.
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It should be mentioned that ¢ :=(c,) and d:=(d,) are additive and
multiplicative s-number functions [24, (11)]. The quasinormed operator
ideals [#{); L] and [£@; LY generated by the Gelfand numbers and

s, 5.t
Kolmogorov numbers, respectively, are defined analogously as above.

2. ENTROPY QUASINORMS OF
IDENTITY OPERATORS FROM [; ONTO [

The aim of this section is to estimate the entropy quasinorms
LE(I,: I? - I7) of the identity operators /, from I* onto [ for 1<p, g ©
and n=1,2,.. The estimates given below improve those of [6; 24,
(14.4.12)], for 1 € p < g £ o0, where an additional logarithmic term appears.
For our purpose we need two known theorems. The first theorem is a result
of [4].

THEOREM A. Let 0 <s< o0, and 0 <t . Then
SNEF)SLOEF)  and  LYNEF)S LEUE,F)

Jor all Banach spaces E and F.

The following very striking result has been proved by Kashin [11] and
Mitjagin [18].

THEOREM B. There exists a constant p > 0 such that

l 3 1 1/2
e > 1)<p [M]

k

fork=1,2,.,nand n=1,2,..

Now we are able to prove the main statement of this section.

THEOREM 1. Let 1 <p,g< o, /s > max(1/p—1/g;0), and 0 < t < 0.
Then
LI I~ 1)< pls, t, p, g) n¥/s Ve
for n=1,2,..

Proof. By Lemma 1 of [4], for the identity operator I, on an arbitrary n-
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dimensional Banach space we have L)(1,) < p(s, t) n"* for n= 1, 2,.... Using
this we obtain
L = IS LI, - B) |1, - 1|
<p(s, t) nYspVa-ve

ép(s, t) nl/s+1/q—l/p

for 1<g<p<oandn=1,2,..
Now we turn to the more complicated situation, where 1 < p < g < 0.

First we treat the case p=1, ¢g=2. To do this let 0 < r < 2. Theorem B
yields

L0 0 B) = sup [K"ey(T,: 17— )
Yr—12 32
<po stp, K/ log(afk+ 1)
<P

From Theorem A we have () < &) and therefore by [24], (6.1.6),
there exists a constant p,(r) such that

L)< LEL(S)  for SE€ L.

Hence

Loy I = B) <po(r) Ly (2 1> 1)

<py(r)ynV

forO<r<2and n=1,2,..
Analogously, if p=2, g=c0, from c,(I,: 1} > 5)=d,(,:I5-1), Ref.
[24], (11.7.6), we obtain, again by Theorem A,

LU 13- 15) <pa(r) Loy 15~ 1)

<P LY 11~ 1)

<pir)

forO<r<2and n=1,2,..
Now we treat the case p =1, ¢ = o0. Let 0 < w < 1; then we can find an r
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with 0<r<2 and 1/w=2/r=1/r+ 1/r. Applying the estimates just
obtained we get
Lot 1] = 15) < pg(W) LiSo (Lt 13~ 15) LI (2 If ~ 1)
<p7(W) nl/r— Uznl/r»l/Z

<py(w) !

forn=1,2,...

In order to check the general case 1 <p < q< o we use interpolation
properties of entropy numbers [24, (12.1.11)].

By (24, p. 173], we have

el P> Iy dey (I, I > In)VP Ve,

Assume 1/s,> 1/p — 1/q and put w :=s,(1/p — 1/q) (<1). Then

L0 (L, 1y~ 1) S AL (I 1 - 1)

(I/w—1)w/sq

<Ps(So,Pq) 1
< Ps(se, o)

I/so+1/q—Vp

for n=1, 2,....
Finally, if 1/s>1/p—1/g and 0<1< o we choose s, such that
1/s > 1/s4> 1/p— 1/q. From Lemma 2 of [4] we obtain the inequality

LWy Iy = 10) < po(s, 505 1) ¥V TVLE) (L 1)~ 17)

for n=1,2,..., and thus by using the preceding estimate we obtain the
required assertion

LEd,: -1 <pls, t,p,q)n' " V"% forn=1,2,..

Remark. Recently Hollig {9] gave a direct proof for

log*(n/k + 1)

3 R 1<kgn

el i~ 1) <p

From this estimate we obtain also the satement of Theorem 1 in the case
I<p<gg 0.
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3. DIAGONAL OPERATORS BETWEEN [ SPACES

In this section we deal with diagonal operators D € ¥(I,,[,) defined by
D(¢) :==(0;¢,) and generated by a sequence (g;). In the following we give
necessary and sufficient conditions for D to belong to <¢).

The results given below extend those of Marcus [16], formulated in the
language of ¢-entropy, and Oloff [21] to the nontrivial and interesting case
1 <p<g< . It turns out that the characterization of diagonal operators
by their entropy numbers follows from the behaviour of the entropy
quasinorms L{(1,: {5 — [7) in Section 2.

We start with a necessary condition.

ProposiTION 1. If 1<p, g€ o0, 1/r > max(l/g—1/p;0), 0<t< o0,
and 1/s=1/r+ 1/p— 1/q. Then

De<Nl,, 1)  implies (o€l ,.

Proof. Without loss of generality we may suppose that |o,|>
loy| > > 0. If DE£¥)(,,1,) and 6, =0 for k >m then the statement is
trivial. So we assume that [o;]>]0,/>--->0. Define operators
J,€£(;,1,) and Q, € £(l,,1]) by

Jn(él Eabitd én) = (é] 3oy éna 0’ 09'--)

and
Q&1 sres Ens Eny19) 1= (€1 0nes §p)-

Obviously, ||J,l|=11Q,ll=1 and D,=Q,DJ, is invertible. Clearly, the
identity operator I,: [ — I can be factorized as follows:

1 -t J
n ” n PRI 3 " D
In loo lp ) —Flp——-—i P
1
Qn I n I

From [24], (12, 2.1), we have e,(I,:I% —I})> (1/6)n and thus the
multiplicativity of the entropy numbers yields
(1/6)n<e,(l,: 1%, - 1)
e,(I, @, DJ,: [y~ ) |1 D; 'L 15, — L]l
11,2 5> B Qull ex(DY N Sl 1 12 I, > BILIDS |

n'~Ye, (D:1,-1)n""|g,|" "

y/

NOINN
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Therefore
(1/6)|o,|n"? < e (D:1,> 1)  forn=1,2,..

Hence

0 0
Z nt/r—l |o.n|t < 6: z nt/r—lnt(l/p—l/q)e;(D)
1

n=1
*
<6 n”lel(D) < co.
1

This implies (0,) € [, ,.
Now we prove the sufficiency of the above condition.

ProposITION 2. If 1< p, g< 00, 1/r > max(l/g—1/p;0), 0 <t o0,

and 1/s=1/r+ 1/p— 1/q. Then
(0)€EL,, impliess DEZLEN,, L)

Proof. First we consider the special case where (6,) €/, . We may

again assume that |o,|>|0,|>--->0. Define canonical operators
k k:
JPe LI, 1) and QW € (1, 1) by
JBE, sy &) 1= (0; 0, 05...5 &, yovny £33 0, 0,....)

and

Q(k)(él yeeey én a-o-) = (ézkw-, ézk—l_ 1) for k > 0.

Clearly, || J“[=[|Q“| = 1.
In the sequel the identity operator of the 2*-dimensional vector space is
denoted by I'¥.. Furthermore we define D' € (12", I?*) for k > 0 by

D(k)(él goeey ézk) = (O'chl et 02k+1_1ézk)-

Obviously, D= Y2 JPD®PQ®  where Q¥ € £(l,, I2), D® € £ (¥, I
and J® € (%, 1,).

Now, choose s such that 1/s > 1/r+ 1/p — 1/q. Then by Theorem 1 of
Section 2 we have

LEODW: ¥ 5 Yy L LOIP: 12 25 | DW: 2 12|
<

po(s,p, Q) 2k“/$+1/q;l/p) |02k|'
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Since L' is equivalent to an a := a(s) ideal norm [24], (6.2.5), it follows,
because of 1/s— 1/r+1/g—1/p > 0, that

m— m—1 Va
L;e) <:lfk)D(k)Q(k)> <P1(S) ( Z Lge)(J(k)D(k)Q(k))a)
0 0
m—1 Ve
<0 (3 191 LoD 1)
0

m—1 Va
<poss s q) (l ka(l/s + Ya- Vo) ‘02k|a>

0

m—1 l/a
\" 2ka(1/s—1/r+ 1Vg—1/p)
T

<pi(s P, q) (
<p4(s’ r, D q) 2m(l/s—l/r+ l/q-l/p).

This implies
m—1
2m=DVse (2 J(k)D(k)Q(k)> K Pyls, 1y p, ) 2V =T+ VA= Vp)
0
and, consequently,
m—1
Cym1 ( \_‘ J(k)D(k)Q(k)> <P5(r,p, q) 2m(— Ir+ 1/0-1/17).
0

In order to estimate the remainder Y% J¥D® Q™ we choose s such that
I/r+1/p—1/q > 1/s > max(1/p — 1/q;0). This is possible since 1/r>
max(1/g — 1/p; 0). Because of 1/s — 1/r + 1/g— 1/p <0 we get

0
Lge) (‘\_: J(k)D(k)Q(k)>

m

© Va
<p6(s) (2 2ka(1/s—l/r+1/q~l/p)>

m

o Ve
m(ls—Vyr+Yg-1/p) [\ pka(l/s—Vr+1g-1/p)
<Pil5)2 (Y2

<p7(s’ r\ Ds q) m(l/s—r+1/q—1p)

by estimates similar to those used before.
Thus

0
k) (k) ) (k) m(—Vr+1/g—1/p)
€am1 (ZJ D*Q )gps(r,p, q)2 ’ 7.

m
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The additivity of the entropy numbers yields

e,m(D) < eym-(D)

m—1 ©
L €m- (Z J(k)D(k)Q(k)) + eymi (Z J(k)D(k)Q(k))
]

m

<p9(r’p’ q) 2m(~l/r+ l/q~l/p).

If n is a natural number we take m such that 2™ < n < 2™*!. By the
monotonicity of the entropy numbers and the preceding estimate we obtain

e,(D) < e,n(D) < py(r, p, q) 2V VAm 1P
<Pl p, q) 2DV Ve

<Puolrprg) n VAV,
Hence
Deggflo(lp’lq) for 1/s=l/r+l/p—1/q.

Finally, the remaining part can be checked by real interpolation: If
0<s57<8;<0,0<B<1,and 1/s= (1 —0)/s, + /s, then

( _(/(e)

Sosto

(E, F), g(e)

S1sty

(E,F))g, S L UE,F) for 0<ty,t,,t< .

The proof of this fact can be carried out in the same way as the proof of
Theorem 14 in [25]. Furthermore we use the following classical interpolation
result (cf. [1, 27]):

(lro.tu’ lrl.tl)e.t= L. for0<ry<r <o, 0<O<I,
1 _1-6 0

— +—, 0<ty,t, 1< 0.
r Ty r

Now, given an exponent r with 1/r > max(l/g — 1/p; 0) we can find rg, r,
and @ such that 1/ry> 1/r>1/r,> max(l/g—1/p;0) and 1/r=
(1= @)/ry + O/r,. As already shown for the operator ¢ transforming every
sequence (o,) into the diagonal operator D we have

01, 0= LUy 1)

where 1/s;,=1/r,+ 1/p—1/q, i=0, 1. Applying the preceding interpolation
formulas we obtain

o:l, ,—» LN, 1)

with 1/s = (1 — @)/sy + O/s, = 1/r + 1/p — 1/q. This completes the proof.
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Summarizing Propositions 1 and 2 we can establish

THEOREM 2. Let 1< p,q< o, 1/r>max(l/qg—1/p;0),0 <1< o0, and
l/s=1/r+ 1/p—1/q. Then

Deze(,1,) ifandonlyif  (6) €1, ,.

Remarks. As an immediate consequence of Theorem 2 we get the
classical result of Mitjagin |17] originally formulated in the language of e-
entropy, which says that the components &) on the Hilbert space coincide
with the well-known Schatten classes .7 ,; cf. [29].

The results of Marcus [16] and Oloff [21], mentioned above, are
contained in the statement of Theorem 2 in the case oo >p>¢q> 1. The
statement of Theorem 2 in the case 1 < p < g< o possesses interesting
applications to eigenvalue problems of operators acting on Banach spaces
and also applications in the theory of probability; cf. [8, 16]. In [5],
Theorem 2 was also used to characterize embedding maps between Besov
spaces by entropy numbers. In this paper the famous results of Birman and
Solomjak |2} and Triebel |28] are obtained and extended to the unknown
cases in |2, 28].

4. DIAGONAL OPERATORS BETWEEN LORENTZ SEQUENCE SPACES

Under special assumptions the Lorentz sequence spaces can be normed: If
I<p< o and I u< oo then

i

ol :

[ee] n uy Yu
(Z [n‘/""/"" M sk(x)] ) for 1 <u< oo

1

i

k=1
n
-1
sup [n77" Y six) foru= oo
I<n< oo k=1

defines an equivalent norm on /, ,.

In the sequel we extend the statements of the preceding section to diagonal
operators acting from [, , into /, ., 1 <p, ¢ < o0, 1 u, v co. It turns out
that the characterization of diagonal operators belonging to the entropy
ideals £)(I, ,,1,,) does not depend on the indices u and v of the
underlying Lorentz sequence spaces.

We again start with the necessary condition.

PROPOSITION 3. Let 1<p, g< oo, I1€u, v, I/r>max(l/qg—
1/p;0),0 <t o0, and 1/s=1/r+ 1/p— 1/q. Then

DeELE, 10 implies (0)E L, ,.
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The proof of this statement is analogous to that of Proposition 1. Now we
turn to the sufficiency of the condition.

ProposITION 4, Let 1<p, g<oo, 1<u, vgoo, 1/r>max(l/g—
1/p;0),0 <t o0, and 1/s=1/r+ 1/p— 1/q. Then

(6)€l., implies DeEZLEN, .1, .)

Proof. First we show that (o)) €1, implies D€ L, 0. 1,,) for
1/r > max(l/g —1/p;0) and 1/s=1/r+ 1/p—1/q. Since 1/r > max(l/q—
1/p;0) we can find p,, q, such that p>p,, g,>¢q, and 1/r>
max(1/gy — 1/p,; 0). By a result of Oloff [21], the operator D € £ (I, .. 1,.,)
can be factorized with diagonal operators D,, D, and D as

D
lp,oo _ ? lq 1
bl
b
lpo —_ lqo

where the generating sequences of these diagonal operators satisfy the con-
ditions

O €Ly —=m
ore ro Po P
1 1 1 1 1
ALY A S U W N P
r q9 G qo 9o
and
1 1 1 1 1 1 1
G)ELy =t RN
@ i r roor, n t 4y Po

Applying Theorem 2 of the preceding section to the operator D we obtain

De L 1) S .sfffzn(lpo, L)

for



ENTROPY NUMBERS OF OPERATORS 147

Thus the ideal property of the classes &) yields

§,00

1 1 1 1
Dey;f’zﬁ(lp.ooqu,l) f()l'—‘g—:—rT-%_;___7

Now the preceding result can be improved by real interpolation: Given an
exponent r with 1/r > max(1/q — 1/p; 0) we can find r,, r;, and © such that
l/ro> 1/r>1/ry > max(1/g — 1/p;0) and 1/r=(1—6@)/r,+ O/r,. As
already shown for the operator ¢ transforming every sequence (g,) into the
diagonal operator D we have

. )
g: lr,',l - ysi.oo(lp,oo’ lq,l)’

where 1/s;,=1/r,+ 1/p—1/q, i=0, 1. Applying the interpolation formulas
given in the proof of Proposition 2 we get

o lr.t_* .&/;‘jt)(lp'oo, lq,l)

with 1/s=(1 - 8)/sq+ O/s,=1/r+ 1/p—1/q.

The general case, where (6,) €/, ,, D€ £(l, ,,1, ), can be checked from
the result just obtained using the ideal property of the classes & f,’ and the
factorization diagram

D
lpgu lq v
zl '
D
Ly =1,

where [ is the identity operator.
Summarizing Propositions 3 and 4 we can establish

THEOREM 3. Let 1 <p, g< oo, I u, v o0, 1/r>max(l/q— 1/p;0),
O0<tg o, and lfs=1/r+ 1/p—1/q. Then

D € '(/.(vf:(lp.u’ lq,u) if‘and Only lf (ai) € lr,t'

5. EIGENVALUE DISTRIBUTIONS OF FACTORABLE OPERATORS

An operator S€ Z(E,F) is called an (r,t/p, q)-factorable operator,
0<r<o,0<tg o, <p, g < oo, iff there exists a commutative diagram

E F
b
L ow—2—1,,

-5

640/32/2-5
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such that D € £(l, .1, ) is a diagonal operator of the form D(¢&;) = (0,&))
with (o) €/, ,, 1/r > max(1/q—1/p;0), A € X(E, I, ) and Y€ £(I, |, F).
The class of these operators is denoted by #, ,, .-

In this section we apply the preceding results to eigenvalue problems of
factorable operators acting on arbitrary (complex) Banach spaces. For
1 < p< g < o we show that the sequence of eigenvalues (4,(S)) of operators
S € F, yp.o(E, E) belongs to certain Lorentz sequence spaces /. In this
connection the eigenvalues 4,(S) of S are ordered in nonincreasing absolute
values and counted according to their algebraic multiplicities. The results
given below complement those obtained in [3, 10, 12] for nuclear operators.

For our purpose we need a further result of [4] (cf. also [7]).

THEOREM C. Let S € £(E,E) be a compact operator on a (complex)
Banach space. Then

11,8 < V2 ey, (S)

forn=1,2,...

Now we can state

THEOREM 4. Let 1<pgLg<ow, O0<r<ow, 0<tgow, and
I/s=1/r+1/p~1/q. Then (A(S))E L, for any SE€F,, , (E E) and
any E.

Proof. Assume S€ ., ,, . (E,E) Then by the definition of these
operators we have the factorization diagram

-5 L F
I
q,

D l \

E
!
b

By Theorem 3, D€ £\, .1, ) for 1/s=1/r+ 1/p—1/q, and thus,
S € £)(E, E). Now, Theorem C yields the desired assertion

1,(8)) €l fi t_t. 1t 1
(n() st ors_r+p q'

The conclusion in Theorem 4 is optimal in the sense of

PROPOSITION 5. Let 1<pKqg< o0, 0<r<o, 0<t< oo, and 1/s=
Yr+ 1/p—1/q. Then for any t,<t there exists a diagonal operator
D& .Z, polly.0slp.o) Such that (1,(D)) € L o
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Proof. Given a diagonal operator D: l, o1, generated by a sequence
(6) € [, \l;,,, with 1/s=1/r+ 1/p—1/q and ¢, < 1. Obviously, (1,(D))¢&

l;..,- However, D belongs to #, ,, (I, . 1, ) because of

D

ID‘OO lp,oo
e
\ /Dz
Iyq

where D, and D, are diagonal operators generated by sequences (¢{") €/, ,
and (6¥)€l, ,, for 1/v=1/p— 1/g. Such a decomposition of D exists
according to a result of Oloff [21].

Remark. For a detailed study of eigenvalues of factorable operators in
the case 1 < g < p < oo one has to use the concept of Weyl numbers recently
developed by Pietsch [25].
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